Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bhabhe, Masih(15DET87)"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Intellecutual data visualisation
    (AIKTC, 2020-05) Alvi, Rizwan; Tanveer, Ahmed(17DET65); Bhabhe, Masih(15DET87); Nagdade, Asif (16DET107); Qureshi, Aatif (17DET55)
    Globalization and technological advances has created an extremely competitive market. This also hasan impact on the banks. In recent years, banking and direct database marketing have become animportant strategy for understanding customer needs. The success rate of banking marketing dependson the achieved results and decisions. In order to make more accurate predictions, statistical tools andmethods are been used. This report examines how to use machine learning techniques to analyze and make predictions inbanking marketing using existing dataset. The purpose of building the models is to predict whether theclient will subscribe for a term deposit. This report presents the different stage of data analysis such asdata preparation and cleaning, building the models and model testing. Finally, the results of machinelearning techniques are evaluated and analysed. Although there is no significant difference in thedecision tree algorithm’s accuracy, C5.0 achieved a higher percentage.Linear regression modelpresents the relationship between quantitative features.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback