Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mohd., Aasif (19CO36)"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Product recommendation system using ML
    (AIKTC, 2023-05) Dange, Anas; Baig, Sahil (19CO49); Sirkazi, Ruzbihan (19CO48); Mohd., Aasif (19CO36); Ulde, Kais (19CO46)
    Product Recommendation System Using ML In today’s modern epoch of information technology, the idea of efficiently finding one’s favourite product in a large dataset of application database, becomes an essential issue to address for the online content providers in order to attract the masses as opposed to their competitors. Recommender systems or recommendation systems, as they are popularly known, are information filtering systems which are usually integrated with several consumer and com- mercial applications. Such systems act as a bridge between various content facilitators such as social media websites, e-commerce portals, streaming platforms, etc. and the users of these applications, by suggesting them items from the application database which conform to the user preferences and past activities. Such personalized systems play a vital role, especially when the user is unclear of the item to the searched for. These systems are infiltrating every aspect of our lives, in the form of ?Because you watched? header on Netflix, ?People you may know? section on Facebook, ?Customers who bought this also bought’ partition on Amazon.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback