Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Momin, Faizan Haroon (17CO24)"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Garbage profiling system
    (AIKTC, 2021-05) Bodke, Kalpana; Momin, Faizan Haroon (17CO24); Khan, Wasiullah (16CO32); Shaikh, Mohammed Saif (16CO53); Shaikh, Mohammed Faisal (15DCO70)
    Building an image classifierWe’ll train a convolutional neural network to classify an image as either cardboard, glass, metal, paper, plastic, or trash with the Tensorflow library. Recycling contamination occurs when waste is incorrectly disposed of—like recycling a pizza box with oil on it (compost). Or when waste is correctly disposed of but incorrectly prepared — like recycling UN rinsed jam jars. it becomes very difficult to recycle the waste the same goes to metals like iron , copper , aluminum etc.and e-waste like mobiles , computers and circuits if we somehow manage to profile them in write time then we can easily recycle them and also sell to any recycling industries. Keywords: Image Classification, Garbage Profiling

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback