Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shaikh, Arshinaaz (17DET61)"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Improved spam detection in social network using machine learning
    (AIKTC, 2020-05) Athavani, Shahin; Shaikh, Owais (17DET36); Shaikh, Arshinaaz (17DET61); Kazi, Adil (17DET41)
    The large use of social media has tremendous impact on our society, culture, business with potentially positive and negative effects. Now-a-days, due to the increase in use of online social networks, the fake news for various commercial and political purposes has been emerging in large numbers and widely spread in the online world. The existing systems are not efficient in giving a precise statistical rating for any given news. Also, the restrictions on input and category of news make it less varied. This paper develops a method for automating fake news detection for various events. We are building a classifier that can predict whether a piece of news is fake based on data sources, thereby approaching the problem from a purely NLP perspective.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback