Weed and himayaritic of leaf detection system with I.P

dc.contributor.authorChaya, S
dc.contributor.authorTanki, Saim (13ET60)
dc.contributor.authorMalik, Ajmal (14ET28)
dc.contributor.authorKhan, Junaid (14ET24)
dc.contributor.authorKhan, Aziz (13ET22)
dc.date.accessioned2019-05-30T05:20:30Z
dc.date.available2019-05-30T05:20:30Z
dc.date.issued2019-05
dc.descriptionSubmitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering 2019en_US
dc.description.abstractIndia, thecountrywherethemainsourceofincomeisfromagriculture. Farmersgrowavarietyofcropsbasedontheirrequirement.Sincetheplants su er fromthedisease,theproductionofcropdecreasesduetoinfections caused byseveraltypesofdiseasesonitsleaf,fruit,andstem.Leafdiseases are mainlycausedbybacteria,fungi,virusetc.Diseasesareoftendi cult to control.Diagnosisofthediseaseshouldbedoneaccuratelyandproper actions shouldbetakenattheappropriatetime.ImageProcessingisthe trending techniqueindetectionandclassi cationofplantleafdisease.This workdescribeshowtoautomaticallydetectleafdiseases.Thegivensystem will provideafast,spontaneous,preciseandveryeconomicalmethodin detecting andclassifyingleafdiseases.Thispaperisenvisionedtoassistin the detectingandclassifyingleafdiseasesusingMulticlassSVMclassi cation technique.First,thea ectedregionisdiscoveredusingsegmentationbyK- means clustering,thenfeatures(colorandtexture)areextracted.Lastly, classi cation techniqueisappliedindetectingthetypeofleafdisease. Keywords: Image Processing,Leafdiseasesdetection,K-meansclustering, featureextraction,MulticlassSVMClassi cation.en_US
dc.identifier.urihttp://www.aiktcdspace.org:8080/jspui/handle/123456789/3046
dc.language.isoenen_US
dc.publisherAIKTCen_US
dc.relation.ispartofseriesPE0494;
dc.subjectProject Report - EXTCen_US
dc.titleWeed and himayaritic of leaf detection system with I.Pen_US
dc.typeProject Reporten_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
GRP13-WEED.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: